TECHNOLOGIA FONTANN

Dysze fontanny Dysze fontanny

Pływające agregaty fontannowe

Pływające agregaty fontannowe są stosowane wszędzie tam, gdzie z powodu wahającego się poziomu wody, zbyt dużej głębokości akwenu lub niekorzystnego podłoża instalacja stacjonarnego agregatu jest niemożliwa. Kompletny montaż w fazie produkcyjnej pozwala na błyskawiczne uruchomienie agregatu. Sprawdzony i niezawodny system kotwiący zapewnia pewne i stabilne umiejscowienie, a profesjonalna rozdzielnia, wyposażona we wszystkie wymagane urządzenia ochronne i zabezpieczające gwarantuje bezpieczeństwo przeciwporażeniowe. Solidny korpus pływający utrzymuje agregat w stabilnej pozycji na powierzchni lustra wody pozostawiając jednocześnie elementy systemu w ukryciu. Ponieważ zasysanie wody przez pompę ma miejsce tuż pod poziomem lustra wody, zostaje zachowane naturalne uwarstwienie temperatury wody. Cyrkulacja wody zapewnia wzbogacanie jej życiodajnym tlenem, co w konsekwencji pozwala faunie i florze rozwijać się w pełnej krasie. Różnorodność dysz fontannowych oraz systemy oświetleniowe (3, 6 lub 9 reflektorów podwodnych) umożliwiają indywidualne zestawienie agregatu.

LANCA

GFIZFR

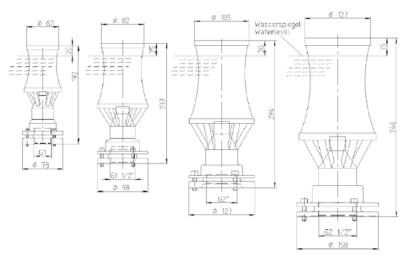
WULKAN

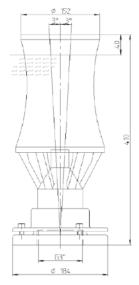
KIELICH

Dysza	LANCA	GEJZER	WUL	KAN	KIELICH			
Agregat	H[m]	H[m]	H[m]	D[m]	H[m]	D[m]		
MIDI II 1,1 kW	9,0	5,0	3,0	2,5	5,0	4,5		
MIDI II 2,2kW	11,5	8	5	3,5	7,5	7,5		
MAXI 4,0kW	16,5	12	7	4,0	9,5	8,0		

Dysze tworzące efekt piany

watersystem


Zastosowanie zależne od poziomu lustra wody

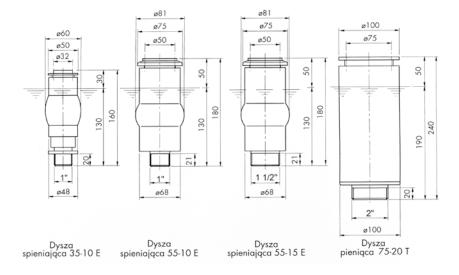

DYSZE KASKADA typ 50 T - 130 T

Dysza Kaskada jest dyszą tworzącą spieniony obraz wodny. Wykorzystanie efektu zasysania pozwala intensywnie mieszać wodę z powietrzem. W zależności od poziomu zanurzenia dyszy w wodzie możemy uzyskać kształt od spienionego wysmukłego stożka po niską i bardzo spienioną kipiel wodną. Przy odpowiednim zaprojektowaniu niecki fontanny i dobraniu urządzeń możliwe jest uzyskanie falującego obrazu wodnego – strumień wody będzie "tańczył" zmieniając się od wysokiego do niskiego, z wąskiego w szeroki.

Dane hydrauliczne	Kaskada 50 T	Kaskada 70 T	Kaskada 90 T	Kaskada 110 T	Kaskada 130 T
FH	DWB DDB DDB	DWB DDB DDB	DWB DDB DDB	DWB DDB DDB	DWB DDB DDB
m	I/min mSW bar	I/min mSW bar	l/min mSW bar	I/min mSW bar	I/min mSW bar
0,25	28,7 1,8 0,18				
0,50	34,5 2,6 0,26	79,7 2,7 0,27			
0,75	39,5 3,3 0,33	88,8 3,3 0,33	141,4 2,7 0,27		
1,00	43,9 4,1 0,41	97,0 4,0 0,40	157,1 3,3 0,33	236,2 2,9 0,29	379,6 3,6 0,36
1,50	51,5 5,7 0,57	111,7 5,3 0,53	184,4 4,6 0,46	279,8 4,1 0,41	437,3 4,8 0,48
2,00	58,2 7,3 0,73	124,7 6,6 0,66	208,2 5,8 0,58	317,4 5,2 0,52	488,3 6,0 0,60
2,50	69,7 10,4 1,04	136,4 7,9 0,79	229,6 7,1 0,71	351,2 6,4 0,64	534,6 7,2 0,72
3,00	74,8 12,0 1,20	147,3 9,2 0,92	249,2 8,3 0,83	382,0 7,6 0,76	577,2 8,4 0,84
4,00	79,6 13,6 1,36	166,9 11,8 1,18	284,4 10,8 1,08	437,2 9,9 0,99	654,2 10,8 1,08
5,00	88,4 16,8 1,68	184,5 14,4 1,44	315,8 13,4 1,34	486,4 12,3 1,23	723,4 13,4 1,34
6,00		200,6 17,1 1,71	344,4 15,9 1,59	531,1 14,7 1,47	786,6 15,5 1,55
7,00		215,5 19,7 1,97	370,9 18,5 1,85	572,5 17,1 1,71	845,3 17,9 1,79
8,00			395,7 21,0 2,10	611,2 19,4 1,94	900,3 20,4 2,04
10,00			441,4 26,1 2,61	682,3 24,2 2,42	1001,7 25,2 2,52
12,00				747,1 29,1 2,91	1094,3 30,1 3,01
14,00				806,9 33,9 3,39	1180,2 35,0 3,50
16,00					1260,6 39,9 3,99
18,00					1336,6 44,9 4,49
20,00					1408,9 49,9 4,99
Materiał	tombak	tombak	tombak	tombak	tombak
Masa	1,0 kg	2,4 kg	3,6 kg	7,0 kg	11,0 kg
Nr art.	670-550	670-551	671-550	671-551	671-552
Nr id.	50911	50912	50915	50916	50917

Dysze tworzące efekt piany

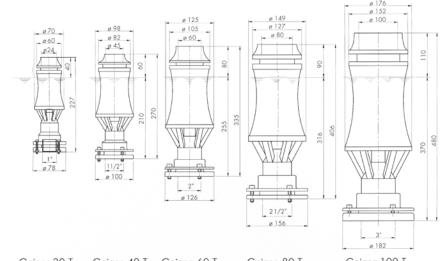
Zastosowanie niezależne od poziomu lustra wody


Dysza Spieniająca

Dysza Spieniająca jest dyszą tworzącą efekt "szampańskiego" strumienia wodnego. Obraz wodny tej dyszy nie jest zależny od poziomu wody, charakteryzuje się dużą odpornością na powiewy wiatru, oraz doskonale napowietrza wodę. Szeroka gama tych dysz pozwala na odpowiedni dobór wielkości strumienia wodnego do założonego efektu wodnego.

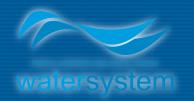
Dane hydrauliczne	Dysza spi	ieniając	35-10 E	Dysza spi	eniająca	55-10 E	Dysza spi	eniająca	55-15 E	Dysza pier	niąca 75	-20 T
FH	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB
m	I/min	mSW	bar	I/min	mSW	bar	l/min	mSW	bar	I/min	mSW	bar
0,25	47,10	1,00	0,10	60,14	1,05	0,11						
0,50	55,10	1,38	0,14	84,57	2,05	0,21	125,00	1,07	0,11			
0,75	71,18	2,15	0,22	108,28	3,18	0,32	151,69	1,50	0,15			
1,00	80,73	2,76	0,28	122,02	4,04	0,40	176,45	1,90	0,19	328,79	1,95	0,20
1,25	89,27	3,38	0,34	134,37	4,90	0,49	198,16	2,35	0,24	367,12	2,43	0,24
1,50	97,07	3,99	0,40	145,69	5,76	0,58	217,74	2,84	0,28	401,84	2,91	0,29
1,75	104,29	4,61	0,46	156,19	6,62	0,66	235,70	3,32	0,33	433,81	3,40	0,34
2,00	111,05	5,23	0,52	166,04	7,48	0,75	252,40	3,81	0,38	463,60	3,88	0,39
2,50	123,47	6,46	0,65	184,19	9,20	0,92	282,90	4,79	0,48	518,12	4,85	0,49
3,00				200,72	10,93	1,09	310,45	5,76	0,58	567,50	5,81	0,58
3,50				216,02	12,65	1,27	335,78	6,74	0,67	612,98	6,78	0,68
4,00							359,37	7,72	0,77	655,38	7,75	0,78
4,50							381,53	8,71	0,87	695,24	8,72	0,87
5,00							402,51	9,69	0,97	733,00	9,70	0,97
6,00							441,56	11,56	1,16	803,36	11,65	1,17
7,00							477,53	13,64	1,36	868,22	13,31	1,33
8,00										928,73	15,57	1,56
9,00										965,69	17,54	1,75
10,00										1039,69	19,51	1,95
Materiał	stal nierdzew	vna/tworz	ywo sztuczne	sto	al nierdzew	/na	sto	l nierdzew	/na		tombak	
Masa		0,5 kg			1,2 kg			1,4 kg			4,3 kg	
Nr art.		706-50		7	706-50		7	706-510			01-55	
Nr id.		50984	1		50986	,		50987	9		50980)

Dysze tworzące efekt piany


Zastosowanie zależne od poziomu lustra wody

Dysza Gejzer

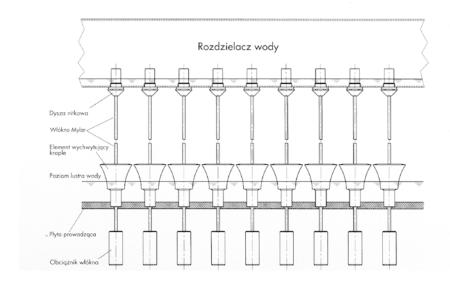
Dysza Gejzer jest dyszą tworzącą spieniony cylindryczny obraz wodny. Kształt obrazu jest zależny od poziomu zanurzenia dyszy w wodzie. Im dysza jest bardziej wynurzona z wody tym obraz wodny staje się cieńszy i wyższy. Gdy dysza jest bardziej zanurzona słup wody jest pełniejszy, ale niższy. Kształt strumienia wody w porównaniu do dyszy Kaskady jest bardziej cylindryczny. Podobnie jak przy dyszy Kaskada możliwe jest uzyskanie efektu "falowania" strumienia wody.



	Gelzer 20 I	Gejzer 40 I	Gelzer 60 I	Gelzer 80 I	Gejzer 100 i
--	-------------	-------------	-------------	-------------	--------------

Dane hydrauliczne	Gejzer 20 T	Gejzer 40 T	Gejzer 60 T	Gejzer 80 T	Gejzer 100 T
FH	DWB DDB DD	B DWB DDB DDB	DWB DDB DDB	DWB DDB DDB	DWB DDB DDB
m	I/min mSW ba	l/min mSW bar	I/min mSW bar	I/min mSW bar	I/min mSW bar
0,50	30,4 2,0 0,2		128,4 2,4 0,24		
0,75	33,9 2,5 0,2		140,3 2,9 0,29		
1,00	37,1 3,0 0,3	95,0 3,5 0,35	151,3 3,4 0,34	242,0 3,7 0,37	
1,50	42,9 3,9 0,3	9 105,9 4,3 0,43	171,2 4,3 0,43	273,2 4,7 0,47	
2,00	47,9 4,9 0,4	9 115,8 5,2 0,52	189,0 5,3 0,53	301,3 5,7 0,57	459,4 5,6 0,56
2,50	52,5 5,9 0,5	9 124,9 6,1 0,60	205,3 6,2 0,62	327,0 6,7 0,67	497,0 6,5 0,66
3,00	56,7 6,9 0,6	9 133,4 6,9 0,69	220,4 7,2 0,72	350,8 7,7 0,77	532,0 7,5 0,75
4,00	64,3 8,9 0,8	9 149,0 8,6 0,86	247,9 9,1 0,91	394,3 9,7 0,97	596,0 9,4 0,94
5,00	71,1 10,8 1,0	3 163,1 10,3 1,03	272,8 10,9 1,09	433,5 11,8 1,18	653,9 11,3 1,13
6,00	77,3 12,8 1,2	3 176,2 12,0 1,20	295,6 12,9 1,29	469,6 13,8 1,38	707,3 13,3 1,33
7,00		188,4 13,8 1,38	316,9 15,7 1,57	503,2 15,9 1,59	757,0 15,2 1,52
8,00		199,8 15,5 1,55	336,8 16,7 1,67	534,8 17,9 1,79	803,8 17,1 1,71
10,00			373,7 20,6 2,06	593,1 22,1 2,21	890,5 21,0 2,10
12,00			407,5 24,4 2,44	646,5 26,2 2,62	969,8 24,9 2,49
14,00				696,1 30,4 3,04	1043,6 28,9 2,89
16,00				742,7 34,6 3,46	1112,8 32,8 3,28
18,00				786,7 38,8 3,88	1178,3 36,8 3,68
20,00				828,7 43,0 4,30	1240,8 40,8 4,08
25,00					1386,0 50,9 5,09
30,00					1519,1 61,1 6,12
Materiał	tombak	tombak	tombak	tombak	tombak
Masa	1,5 kg	3,2 kg	5,3 kg	9,3 kg	16,2 kg
Nr art.	710-550	711-550	712-550	713-550	714-550
Nr id.	50991	50992	50993	50994	50995

Dysze tworzące efekt przestrzenny Dysze tworzące efekt przestrzenny


Kompleksowe systemy fontannowe

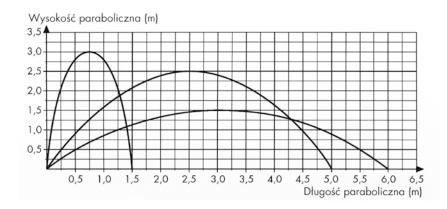
Fontanna nitkowa

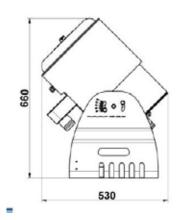
Uzyskanie efektu przestrzennej ściany wodnej jest możliwe dzięki zastosowaniu włókien Mylar. Stworzony w ten sposób obraz wodny imituje ścianę wodną. Odpowiedni dobór ilości wody spływającej po nitkach minimalizuje chlapanie wody. System składa się z włókien Mylar, dolnego zbiornika wodnego i górnego rozdzielacza rozpływowego.

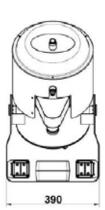


Dysze tworzące efekt paraboliczny Dysze tworzące efekt paraboliczny

Kompleksowe systemy fontannowe


Jumping Jet Rainbow Flash


Uzyskanie najbardziej spektakularnych obrazów wodnych jest możliwe dzięki zastosowaniu dyszy Jumping Jet. Dysza ta tworzy 18 mm paraboliczny strumień wodny podświetlony przez kolorowe światło LED. Zastosowanie sterownika elektronicznego umożliwia uzyskanie efektu ciągłych lub przerywanych strumieni. Możliwe jest stosowanie wielu jednostek dla spotęgowania efektu i tworzenia przestrzennych aranżacji.



Charakterystyka techniczna urządzenia:

- zasilanie bezpiecznym napięciem 12VAC, zgodnym z europejskimi normami bezpieczeństwa odnośnie publicznych obiektów fontannowych,
- protokół DMX-RDM gwarantujący uzyskanie informacji zwrotnej o aktualnym stanie najważniejszych parametrów agregatu,
- wtyki VTS (12VAC & DMX), wykonane w standardzie IP68, stanowiące integralną część agregatu.

Wymiary (Szerokość/Głębokość/Wysokość)

Typ reflektora

Zasilanie oświetlenia i silnika

Moc

Średnica strumienia

Wymagane ciśnienie

Maksymalna głębokość wody

Minimalna różnica poziomu odpływu

Kat pochylenia

Zasilanie

Odpływ

RDM-DMX

Waga

530x390x660 mm

LED RGB

12V / AC

20W

18mm

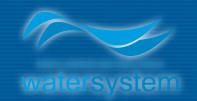
0,5 bar

250mm

100mm

45 - 90°

1 1/2"

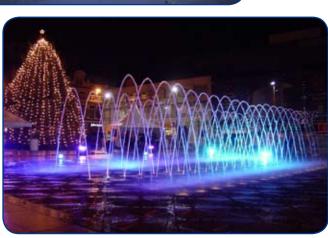

ייר ייר

Puszka zasilania VTS

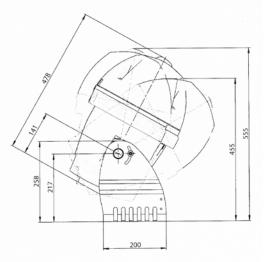
50kg

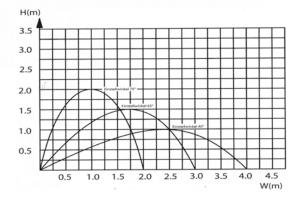
Dysze tworzące efekt paraboliczny Dysze tworzące efekt paraboliczny

Kompleksowe systemy fontannowe


Jumping Jet Rainbow Star

Tworzenie 12 mm strumieni w kształcie paraboli o zasięgu do 4 metrów jest możliwe dzięki zastosowaniu Agregatów Jumping Jet Rainbow Star. Sposób ich działania jest alternatywny do Jumping Jet. Mniejsze gabaryty urządzenia umożliwiają szersze zastosowanie tych urządzeń. Zintegrowane oświetlenie ledowe pozwala na uzyskanie wielokolorowych aranżacji.



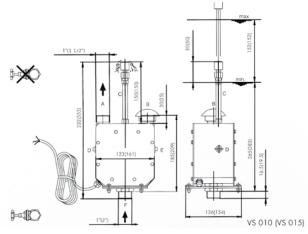


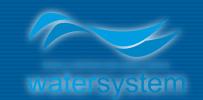
Rainbow-Star:

WATERSYSTEM SP. Z O.O.

Dysze tworzące efekt kanonady Dysze tworzące efekt kanonady

Kompletne systemy fontannowe


Vario Switch


Zawór Vario Switch jest zaworem sterującym dopływ wody do dysz fontanny. Zastosowanie umożliwia uzyskanie dynamicznego obrazu wodnego fontanny. Pozwala to na uzyskanie efektów kanonady, znikania wody czy jej wyskakiwania. Zawór jest montowany w wodzie pod dyszą i steruje jej pracą. Dzięki sterowaniu elektronicznemu możliwe jest przełączanie się zaworu co 0,1 sekundy.

Typ zaworu			Vario Sw	itch 010					Vario Sw	itch 015		
Typ dyszy	Kometa	10-12 T	Kometa	10-14 T	Spieniająco	35-10 E	Kometa	15-17 T	Kometa	15-20 T Sp	ieniająca	55-15 E
Wysokość	VDB	VWB	VDB	VWB	VDB	VWB	VDB	VWB	VDB	VWB	VDB	VWB
fontanny (m)	(bar)	(l/min)	(bar)	(l/min)	(bar)	(l/min)	(bar)	(l/min)	(bar)	(l/min)	(bar)	(l/min)
0,5	0,21	27	0,25	31	0,42	38	0,16	100	0,16	102	0,50	158
1,00	0,35	37	0,46	40	0,72	49	0,22	123	0,22	125	0,92	209
1,50	0,60	46	0,66	48	0,98	57	0,32	137	0,32	139	1,42	255
2,00	0,72	50	0,86	55	1,22	63	0,42	154	0,42	155	1,92	291
2,50	0,86	55	1,06	61	1,52	70	0,52	168	0,52	169	2,48	322
3,00	1,02	60	1,32	67	1,80	76	0,62	181	0,64	185	2,80	343
3,50	1,22	65	1,55	73	2,10	81	0,72	192	0,75	195		
4,00	1,38	70	1,82	79			0,82	202	0,84	206		
4,50	1,64	75	1,96	82			0,92	214	0,92	216		
5,00	1,82	80	2,18	87			1,02	218	1,04	230		
5,50	2,10	85	3,00	96			1,12	230	1,14	241		

Typ zaworu:	VS 010a-24V	VS 015a-24V
Dane techniczne		
Napięcie	24V DC	24V DC
Moc	2 x 8 W	2 x 8 W
Q min.	35 l/m	85 l/m
H min.	1 mSW	2 mSW
Q max.	95 l/m	325 l/m
H max.	34 mSW	30 mSW
Rodzaj zabezpieczenia	IP58	IP58
Materiał	POM /stal nierdzewna	POM /stal nierdzewna
Masa	5,2 kg	6,7 kg
Jakość filtra ssawnego	Ø 1 mm	Ø 1 mm
Gwarancja	2 lata	2 lata
Nr id.	56790	56791

Agregaty

Agregaty Aqua Jet EC1/EC2

Agregaty AquaJet EC1/EC2 umożliwiają tworzenie dynamicznych obrazów wodnych. Każdy z agregatów może być indywidualnie kontrolowany poprzez system DMX, zarówno pod kątem wysokości, jak i dynamiki obrazu wodnego. Dzięki temu uzyskujemy możliwość kreowania różnorodnych efektów: napisów, cyfr bądź figur wodnych. Szczególnie ciekawe efektyuzyskujemy przy tworzeniu interaktywnych placów zabaw, gdzie poszczególne obrazy wodne tworzą tzw. "matrix wodny". Agregaty wyposażone są w filtry wstępne ze stali nierdzewnej oraz hermetyczne puszki połączeniowe. Sterownie następuje poprzez cyfrowy system komunikacji DMX. Podstawowym założeniem jest liniowość sieci tzn. sygnał przechodzi z jednego urządzenia do kolejnego. Mniejsze aranżacje mogą być kontrolowane poprzez sterownik EC (256 CH). W przypadku synchronizacji pracy poszczególnych obrazów wodnych oraz reflektorów LED (PP320, PL320, PR320) do muzyki wymagane jest zastosowanie sterownika MFC (4x512 CH), który umożliwia precyzyjną kontrolę osi odciętych czasu rzeczywistego.

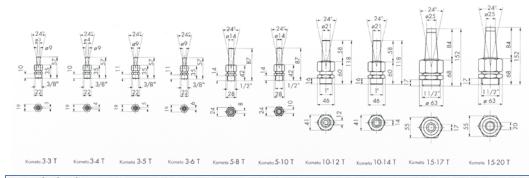
Charakterystyka techniczna urządzenia:

- efekt dynamicznego cięcia obrazu wodnego na bazie protokołu DMX (120 zmian prędkości obrotowej/min), przy założeniu pełnego obrazu wodnego o średnicy 12mm i wysokości do 1500/3000mm,
- efekt płynnej zmiany wysokości obrazu wodnego na bazie protokołu DMX (20mm – 1500/3000mm – 20mm)
 (20 zmian wartości prędkości obrotowej/min),
- zasilanie bezpiecznym napięciem 24VDC, zgodnym z europejskim normami bezpieczeństwa odnośnie publicznych obiektów fontannowych,
- protokół DMX-RDM gwarantujący uzyskanie informacji zwrotnej o aktualnym stanie najważniejszych parametrów agregatu,
- wtyki VTS (24VDC & DMX), wykonane w standardzie IP68, stanowiące integralną część agregatu.

Dane techniczne	EC1	EC2
Rozmiary bez filtra (długość/szerokość/wysokość)	190 x 114 x 152 mm	280 x 160 x 160 mm
Rozmiar z filtrem (długość/szerokość/wysokość)	265 x 114 x 152 mm	310 x 160 x 160 mm
Średnica na ssaniu	1,5"	1,5"
Średnica na tłoczeniu	1"	1,5"
Waga bez filtra	3,5 kg	4,5kg
Waga z filtrem	3,7 kg	5,0kg
Hmax	2,45 m	5,20 m
Qmax	92 l/min	140l/min
Wysokość obrazu wodnego dla Komet 10-12T	1,5 m	3,0 m
Zasilanie	DC 24V/53W	DC 24V/120W
Zabezpieczenie	IP 68	IP 68

Dysza Kometa Dysza Kometa

Dysze jednostrumieniowe


Dysza Kometa

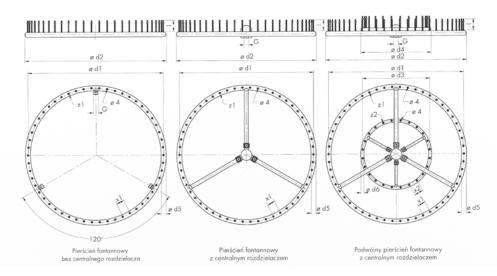
Dysza Kometa jest dyszą pełnego przeźroczystego strumienia wodnego. Może być zastosowana samodzielnie lub też tworzyć część większego obrazu wodnego. Szeroka gama średnic strumieni wodnych od 3 do 20 mm oraz regulacja kąta nachylenia dyszy do 12° w każda stronę pozwala dowolnie kształtować obraz wodny.

Dane hydrauliczne	Kor	neta 3	3-3 T	Kor	neta 3	-4 T	Kon	neta 3	-5 T	Kon	neta 3	-6 T	Kon	neta 5	-8 T
FH	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB
m	I/min	mSW	bar	I/min	mSW	bar	1/min	mSW	bar	1/min	mSW	bar	I/min	mSW	bar
0,50	1,4	0,6	0,06	2,5	0,6	0,06	3,8	0,7	0,07	4,8	0,6	0,06	9,5	0,7	0,07
0,75	1,7	0,9	0,09	3,0	0,9	0,09	5,3	0,9	0,09	6,2	0,8	0,09	11,5	0,9	0,01
1,00	2,0	1,2	0,12	3,5	1,2	0,12	6,3	1,3	0,13	7,2	1,2	0,12	12,6	1,2	0,12
1,25	2,3	1,5	0,15	4,0	1,5	0,15	7,2	1,5	0,15	8,7	1,5	0,15	14,9	1,6	0,10
1,50	2,5	1,8	0,18	4,4	1,8	0,18	8,0	1,8	0,18	9,9	1,8	0,18	17,0	1,8	0,18
1,75	2,7	2,1	0,21	4,7	2,1	0,21	8,7	2,2	0,22	11,1	2,1	0,21	18,8	2,1	0,20
2,00	2,9	2,4	0,24	5,1	2,5	0,25	9,3	2,5	0,25	12,1	2,5	0,25	20,5	2,4	0,24
2,50										13,9	3,2	0,32	23,4	3,2	0,32
3,00										15,6	4,0	0,40	26,1	3,9	0,39
3,50													28,5	4,7	0,47
4,00													30,7	5,4	0,54
Materiał	- 1	mosiqd:	Z		mosiada	Z		nosiąd:	z	r	nosiąd:	Z	r	nosiqd:	Z
Masa		0,06 kg	3		0,06 kg	3		0,06 kg	9	(0,06 kg	3	(0,13 kg	3
Nr art.	(590-55	0	(590-55	1	(590-55	2	6	90-55	3	6	91-55	3
Nr id.		50957	,		50958	3		50959)		50960)	:	50964	

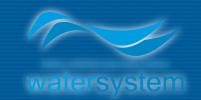
Dane hydrauliczne	Kometa 5-10 T	Kometa 10-12 T	Kometa 10-14 T	Kometa 15-17 T	Kometa 15-20 T
FH	DWB DDB DDB	DWB DDB DDB	DWB DDB DDB	DWB DDB DDB	DWB DDB DDB
m	I/min mSW bar	I/min mSW bar	I/min mSW bar	I/min mSW bar	I/min mSW bar
0,50	15,5 0,8 0,08	21,5 0,6 0,06	30,1 0,6 0,06	42,2 0,6 0,06	58,9 0,6 0,06
0,75	19,0 1,1 0,11	25,9 0,8 0,08	37,6 0,9 0,09	52,0 0,9 0,09	73,9 0,8 0,08
1,00	21,9 1,4 0,14	31,2 1,1 0,11	44,5 1,2 0,12	62,2 1,1 0,11	87,3 1,1 0,11
1,25	25,3 1,8 0,18	35,8 1,4 0,14	50,5 1,5 0,15	69,2 1,4 0,14	98,9 1,4 0,14
1,50	28,3 2,0 0,20	39,8 1,7 0,17	55,9 1,8 0,18	76,4 1,7 0,17	109,3 1,7 0,17
1,75	31,0 2,5 0,25	43,5 2,1 0,21	60,8 2,1 0,21	82,9 1,9 0,19	118,8 1,9 0,19
2,00	33,4 2,8 0,28	46,9 2,3 0,23	65,3 2,4 0,24	89,0 2,2 0,22	127,6 2,2 0,22
2,50	37,9 3,6 0,36	53,1 2,9 0,29	73,6 3,0 0,30	100,1 2,8 0,28	143,6 2,8 0,28
3,00	41,9 4,4 0,44	58,6 3,5 0,35	81,0 3,7 0,37	110,0 3,4 0,34	158,0 3,4 0,34
3,50	45,6 5,2 0,52	63,6 4,2 0,42	87,8 4,3 0,43	119,2 4,0 0,40	171,2 3,9 0,39
4,00	49,0 6,0 0,60	68,3 4,8 0,48	94,2 5,0 0,50	127,7 4,6 0,46	183,5 4,5 0,45
5,00	55,2 7,6 0,76	76,9 6,1 0,61	105,7 6,2 0,62	135,7 5,2 0,52	206,0 5,7 0,57
6,00	60,8 9,2 0,92	84,6 7,4 0,74	116,1 7,5 0,75	143,2 5,8 0,58	226,2 6,9 0,69
7,00		91,6 8,7 0,87	125,7 8,8 0,88	157,3 7,0 0,70	244,9 8,1 0,81
8,00		98,2 10,0 1,00	134,7 10,1 1,01	170,2 8,2 0,82	262,3 9,2 0,92
9,00			143,1 11,4 1,14	182,3 9,4 0,94	278,6 10,4 1,04
10,00			151,0 12,8 1,28	193,6 10,6 1,06	294,1 11,6 1,16
11,00				204,4 11,8 1,18	308,9 12,8 1,28
12,00				214,6 13,0 1,30	323,0 14,0 1,40
13,00					336,6 15,2 1,52
14,00					349,6 16,4 1,64
Materiał	mosiądz	mosiądz	mosiądz	mosiądz	mosiądz
Masa	0,13 kg	0,45 kg	0,45 kg	0,86 kg	0,86 kg
Nr art.	691-554	692-553	692-554	693-550	693-551
Nr id.	50965	50968	50969	50970	50971

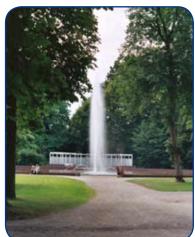
Dysze 3-6, 5-10, 10-14T, 15-17T dostępne w wersji ze stali nierdzewnej

Ring wodny Ring wodny Dysze wielostrumieniowe

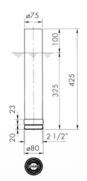


Ring wodny

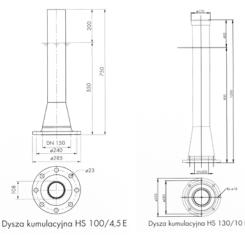

Strumień wodny na kształt kielicha można uzyskać dzięki zastosowaniu ringu wodnego. Dzięki szerokiej gamie średnic (od 0,5 do 3 metrów) i ilości dysz (od 18 do 72) możliwe jest uzyskanie niepowtarzalnej kompozycji wodnej. Możliwe jest również zastosowanie podwójnych i potrójnych ringów wodnych na specjalne zamówienie klienta

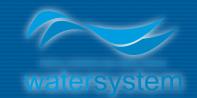

Dane hydrauliczne	Pierś	deń fontani	nowy	Pierśc	ień fontan	nowy	Pierś	aeń fontan	nowy	Pierśc	ień fontan	nowy	Pierś	aeń fontar	nowy
		00/18/			50/24/		1000/36/4		1500/54/4			2	000/72	/4	
FH	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB
m	I/min	mSW	bar	l/min	mSW	bar	l/min	mSW	bar	I/min	mSW	bar	l/min	mSW	bar
0,75	55,6	1,0	0,10	74,1	1,0	0,10	111,2	1,0	0,10	166,8	1,0	0,10	222,4	1,0	0,10
1,00	64,9	1,3	0,13	86,6	1,3	0,13	129,9	1,3	0,13	194,8	1,3	0,13	259,7	1,3	0,13
1,25	73,4	1,7	0,17	97,9	1,7	0,17	146,8	1,7	0,17	220,2	1,7	0,17	293,7	1,7	0,17
1,50	81,3	2,1	0,21	108,4	2,1	0,21	162,6	2,1	0,21	243,9	2,1	0,21	325,2	2,1	0,21
1,75	88,8	2,5	0,25	118,4	2,5	0,25	177,5	2,5	0,25	266,3	2,5	0,25	355,1	2,5	0,25
2,00	95,9	2,9	0,29	127,9	2,9	0,29	191,8	2,9	0,29	287,7	2,9	0,29	383,6	2,9	0,29
2,50	109,4	3,8	0,38	145,9	3,8	0,38	218,9	3,8	0,38	328,3	3,8	0,38	437,8	3,8	0,38
3,00	122,3	4,7	0,47	163,0	4,7	0,47	244,5	4,7	0,47	366,8	4,7	0,47	489,0	4,7	0,47
3,50	134,3	5,7	0,57	179,4	5,7	0,57	269,1	5,7	0,57	403,7	5,7	0,57	538,3	5,7	0,57
4,00	146,5	6,7	0,67	195,3	6,7	0,67	293,0	6,7	0,67	439,5	6,7	0,67	586,0	6,7	0,67
Dane techniczne															
d1		500 mm			750 mm	1		1000 mr	n	1	500 mn	n	2	2000 mr	n
d2		528 mm			785 mm	1	1042 mm		1554 mm			2064 mm			
d5		28 mm			35 mm			42 mm			54 mm			64 mm	
G		1" (1")		1	" (1 1/4	(")	11	/4" (1 1	/2")	1	1/2" (2	")	2	" (2 1/2	")
1		124 mm			124 mm	1		124 mm	1		124 mm	1		124 mm	1
x1		87 mm			98 mm			87 mm			87 mm			87 mm	
zl		18 szt.			24 szt.			36 szt.			54 szt.			72 szt.	
Materiał	mie	edź/tomb	oak	mie	miedź/tombak		miedź/tombak		miedź/tombak			miedź/tombak			
Masa		3,00 kg			5,00 kg			9,00 kg	1	17,00 kg				31,00 kg	3
Nr art.		723-502			723-504	1		723-506	5	723-508			723-510		
Nr id.		51002			51004			51006	,		51008			51010	

Dysza kumulacyjna Dysza kumulacyjna


Dysze jednostrumieniowe

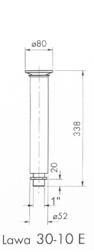
Dysza Kumulacyjna


Dysza kumulacyjna jest specjalną dyszą stosowaną do uzyskiwania obrazów wodnych o dużych wysokościach. Pozwala ona na uzyskanie stabilnego strumienia wodnego o wysokości od 5 do 80 metrów.

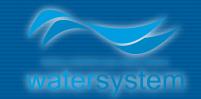

Dysza kumulacyjna H68/3,5 T

	~
90000	
No.	
	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN
The second second	
-	
or other Designation of the last of the la	

Dysza kumulacyjna	Zewnętrzna średnica strumienia pierścieniowego						Grubość warstwy wodnej			
HS 70/3,5 T	70 mm							3,5 mm		
HS 100/4,5 E	100 mm					4,5 mm				
HS 130/10 E			130	mm				10 mm		
Dane hydrauliczne		kumulac			kumulac	• •		Dysza kumulacyjna HS 130/10 E		
FILE		68 /3,! DDB		DWB	00/4,	DDB	DWB	DDB	DDB	
FH	DWB	mSW	DDB		mSW	bar		mSW	bar	
m	I/min	mSvv	bar	l/min	movv	bar	l/min	movv	bar	
5,00	514	6,3	0,6							
6,00	566	7,6	0,8							
7,00	613	9,0	0,9							
8,00	657	10,3	1,0							
9,00	699	11,6	1,2							
10,00	738	13,0	1,3	1120	12,0	1,2				
12,00	811	15,7	1,6	1200	14,0	1,4				
14,00	878	18,4	1,8	1400	20,0	2,0				
16,00	941	21,1	2,1	1460	21,0	2,1				
18,00	1001	23,9	2,4	1550	22,0	2,2				
20,00	1057	26,6	2,7	1670	27,0	2,7				
22,00	1111	29,4	2,9	1700	28,0	2,8				
24,00	1162	32,2	3,2	1730	28,0	2,8				
26,00				1800	29,0	2,9				
28,00				1900	33,0	3,3				
30,00				2080	40,0	4,0				
35,00				2170	44,0	4,4				
40,00				2740	69,0	6,9	6828	53,8	5,4	
45,00				2900	80,0	8,0	7290	61,3	6,1	
50,00							7735	69,0	6,9	
55,00							8165	76,9	7,7	
60,00							8583	85,0	8,5	
65,00							8990	93,2	9,3	
70,00							9388	101,6		
75,00								110,3		
80,00								119,0		
Materiał	tom	bak/mc	osiądz		nierdze			nierdze		
Masa		5,0 kg			33,0 kg			76,0 kg		
Nr art.		696-500			596-55			696-552		
Nr id.		50972			50973	5		55350		

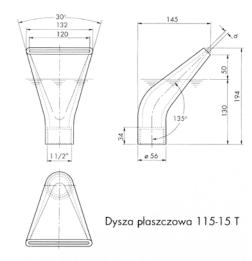

Dysza Lawa

Jednym z najcichszych obrazów wodnych jaki można wykreować, jest strumień wodny wydobywający się z dyszy Lawa. Rozmiar i kształt dzwonu utworzonego z filmu wodnego może być zmieniany poprzez ilość wody dopływającej do dyszy.



Dane hydrauliczne	Lav	va 25	-5 E	Law	Lawa 30-10 E			Lawa 45-10 E		
FD	DWB	DDB	DDB	DWB	DDB	DDB	DWB	DDB	DDB	
mm	I/min	mSW	bar	1/min	mSW	bar	l/min	mSW	bar	
200	17,0	0,9	0,09							
300	21,0	1,1	0,11	35,0	1,1	0,11				
400	25,0	1,4	0,14	43,0	1,3	0,13	43,0	1,4	0,14	
500	29,0	1,7	0,17	51,0	1,6	0,16	51,0	1,7	0,17	
600	33,0	2,1	0,21	59,0	2,0	0,20	59,0	2,1	0,21	
700				67,0	2,5	0,25	67,0	2,6	0,26	
900							75,0	3,2	0,32	
1100										
1300										
1500										
Materiał	stal nier	dzewna,	/tombak	stal nier	dzewna,	/tombak	stal nier	dzewna	/tombak	
Masa		0,6 kg		1,3 kg			1,6 kg			
Nr art.	(660-550		661-550			662-550			
Nr id.		50884			50889			50890		

Dysza Płaszczowa Dysza Płaszczowa


Dysze tworzące warstwę wodną

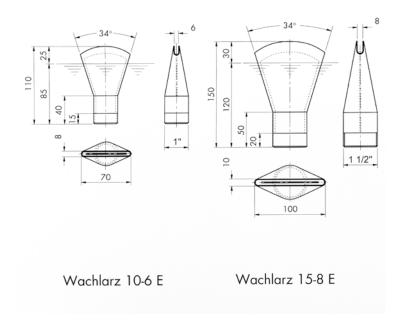
Dysza Płaszczowa


Uzyskanie efektu wachlarza wodnego o grubości 6 mm jest możliwe dzięki zastosowaniu dyszy Płaszczowej. Woda wylatuje z dyszy wachlarzem o rozpiętości 30°. Dysza ta jest szczególnie atrakcyjna, gdy jest zaaranżowana w większej ilości w około dyszy centralnej.

Dane hydrauliczne		Dysza p	ołaszczowa 1	15-15 T	
PW	PH	SPB	DWB	DDB	DDB
m	m	m	l/min	mSW	bar
0,50	0,10	0,25	94,20	0,38	0,04
0,75	0,15	0,33	112,90	0,57	0,06
1,00	0,20	0,42	131,80	0,76	0,08
1,25	0,26	0,50	150,00	0,95	0,10
1,50	0,33	0,58	168,60	1,15	0,12
1,75	0,40	0,67	187,30	1,35	0,14
2,00	0,48	0,75	205,90	1,52	0,15
2,50	0,62	0,92	243,20	1,91	0,19
3,00	0,77	1,08	280,40	2,29	0,23
3,50	0,92	1,25	317,50	2,68	0,27
4,00	1,06	1,42	354,80	3,06	0,31
4,50	1,21	1,58	392,10	3,44	0,34
Materiał		S	stal nierdzewn	ıa	
Masa			2,5 kg		
Nr art.			697-551		
Nr id.			50976		

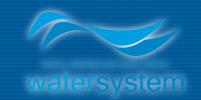
Dysza Wachlarz Dysza Wachlarz

Dysze tworzące warstwę wodną

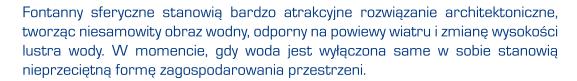


Dysza Wachlarz

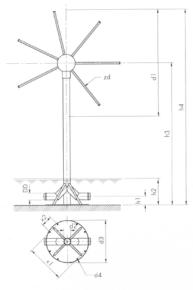
Obraz wodny uzyskany po zastosowaniu dyszy Wachlarz to film wodny o grubości od 6 do 8 mm w formie wachlarza. Obraz wodny nie zależny od poziomu wody może zostać wykorzystany zarówno w formie poziomej jak i pionowej.

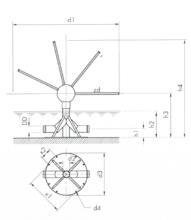


Dane hydrauliczne	1	Wachlar	z 10-6	E		Wachlarz	15-8	E	
FH	SPB	DWB	DDB	DDB	SPB	DWB	DDB	DDB	
m	m	l/min	mSW	bar	m	l/min	mSW	bar	
0,25	0,60	70,00	0,40	0,04					
0,50	1,00	94,57	0,63	0,06	1,40	143,39	0,60	0,06	
0,75	1,50	116,43	0,95	0,01	1,80	174,29	0,87	0,09	
1,00	2,00	134,81	1,28	0,13	2,80	200,50	1,15	0,11	
1,25	2,80	150,98	1,60	0,16	3,40	223,68	1,44	0,14	
1,50	3,00	165,58	1,93	0,19	4,00	244,68	1,72	0,17	
1,75	3,80	179,01	2,26	0,23	5,00	264,04	2,00	0,20	
2,00					5,50	282,08	2,29	0,23	
2,50									
Materiał		stal nier	dzewna			stal nier	dzewna		
Masa	0,25 kg				0,49 kg				
Nr art.	697-560				697-561				
Nr id.	53056				53047				


Dysza sferyczna Dysza sferyczna

Dysze sferyczne


Dysza sferyczna

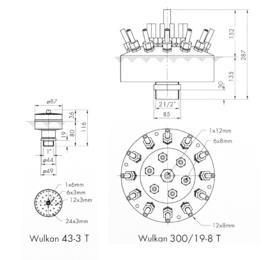


Kula wodna

Półkula wodna

Dane	hydrau	liczne		Kula	wodna			Półkula wodna					5
		V900/37 E	V1200/79 E	V1500/127 E	V2500/127 E	V3500/380 E	V6000/450 E	H900/25 E	H1200/49 E	H1500/73 E	H2500/73 E	H3500/210 E	H6000/248 E
zd	szt.	37	79	127	127	380	450	25	49	73	73	. 210	248
DWB	I/min.	370	790	1270	1270	4180	6750	250	490	730	730	2310	3720
DDB	mSW	10	10	11	12	16	20	9	9	10	11	13	15
DDB	bar	1	1	1,1	1,2	1,6	2,0	0,9	0,9	1,0	1,1	1,3	1,5
MBD	mm	2000	2500	3000	4500	6000	10000	1500	2000	2500	3500	5000	9000
DD	mm	1xDN 65	1xDN 65	2xDN 65	2xDN 65	4xDN 65	6xDN 100	1xDN 65	1xDN 65	1xDN 65	1xDN 65	2xDN 80	3xDN 100
d1	mm	900	1200	1500	2500	3500	6000	900	1200	1500	2500	3500	6000
d2	mm	76	76	76	76	160	220	76	76	76	76	160	220
d3	mm	475	475	475	475	1000	1500	475	475	475	475	1000	1000
d4	mm	12	12	12	12	22	26	12	12	12	12	22	22
h1	mm	100	100	100	100	100	125	100	100	100	100	100	125
h2	mm	300	300	300	400	500	500	300	300	300	400	500	500
h3	mm	1350	1600	1850	2350	4100	6600	500	500	500	600	600	650
h4	mm	1800	2200	2600	3600	5850	9600	950	1100	1250	1850	2350	3650
x1	mm	430	430	430	430	900	1400	430	430	430	430	900	900
x2	mm	123	123	123	123	200	250	123	123	123	123	200	200
Materi	ał	stal nie	erdzewna,	/tombak	stal ni	erdzewna	/tombak	stal ni	erdzewna	/tombak	stal nie	erdzewna/	tombak
Masa	kg	32	56	100	160	1100	3100	25	42	65	100	650	1800
Nr art.	9	666-550	666-551	666-552	666-554	666-575	666-580	666-555	666-556	666-557	666-559	666-585	666-590
Nr id	•	50894	50895	50896	51759	51760	51761	50897	50898	50899	51762	51763	51764

Dysza Vulkan Dysza Vulkan


Dysze wielostrumieniowe

Dysza Vulkan

Wulkan jest wielo-dyszowym zestawem fontannowym, który kreuje strumienie wodne w różnych kierunkach. Dostępne są dysze tworzące strumienie wodne w wysokości od 0,5 do 15 metrów. Dzięki demontowanej górnej pokrywie można łatwo dysze czyścić, a tym samym dbać o odpowiednią wysokości strumienia wodnego.

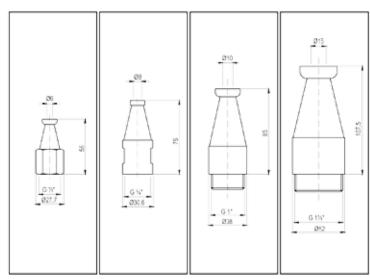
Wszystkie ruchome dysze Kometa (Wulkan 200 i Wulkan 300) odchylane o 12° od pozycji pionowej!

Dane hydrauliczne	Wulkan 300/19-8						
FH	DSD	DWB	DDB	DDB			
m	m	l/min	mSW	bar			
2,00							
2,50							
3,00	zmienna	339,51	3,80	0,38			
3,50	zmienna	367,70	4,40	0,44			
4,00	zmienna	393,92	5,00	0,50			
5,00	zmienna	441,82	6,40	0,64			
6,00	zmienna	485,13		0,77			
7,00	zmienna	524,99		0,90			
8,00	zmienna	562,14	10,30	1,03			
9,00	zmienna	597,08	11,60	1,16			
10,00	zmienna	630,17	12,90	1,29			
11,00	zmienna	661,71	14,20	1,42			
12,00	zmienna	691,89	15,60	1,56			
13,00	zmienna	720,90		1,69			
14,00	zmienna	748,86	18,20	1,82			
15,00	zmienna	775,89	19,60	1,96			
Materiał		mosi					
Masa		18,5					
Nr art.		722-					
Nr id.		510	00				

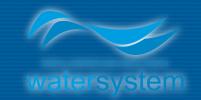
Dane hydrauliczne		Wulkan	43-3 T				
FH	DSD	DWB	DDB	DDB			
m	m	l/min	mSW	bar			
0,50	0,40	41,60	1,00	0,10			
0,75	0,50	50,15	1,50	0,15			
1,00	0,65	60,22	2,00	0,20			
1,50	0,80	76,49	3,00	0,30			
2,00	1,10	89,88	4,00	0,40			
2,50	1,30	101,54	5,00	0,50			
3,00	1,50	112,00	6,00	0,60			
3,50	1,70	121,58	7,60	0,76			
4,00	2,00	130,48	8,75	0,88			
Materiał	mosigdz						
Masa	1,5 kg						
Nr art.	684-551						
Nr id.		509	50				

Dysze mgławiące Dysze mgławiące

Dysze wielostrumieniowe



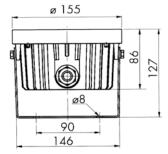
Seria mosiężnych dysz przeznaczonych do stosowania w układach fontannowych. Odpowiednie zagęszczenie i rozmieszczenie dysz pozwala na stworzenie efektu mgły. Obraz wodny charakteryzuje się małą odpornością na podmuchy wiatru.

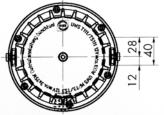


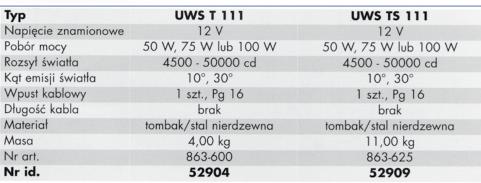
Oznaczenie/Przyłącze	DM06 - 1/2"			DN	0M08 - 3/4"			DM10 - 1"		DM15 - 1, ^{1/2} "		
D(mm)	6mm			8mm			10mm			15mm		
H(mm)	D	Q	Р	D	Q	Р	D	Q	Р	D	Q	Р
	(m)	(l/m)	(H ₂ O)	(m)	[l/m]	(H ₂ O)	(m)	(l/m)	(H ₂ O)	(m)	(l/m)	(H ₂ O)
0,50	1,2	4,4	1,80	0,7	9,5	2,40	1,25	21,7	1,70	2,20	35,0	3,00
1,00	4,0	5,7	3,50	1,7	13,0	4,30	2,25	28,5	2,70	4,20	51,0	6,30
1,50	4,8	7,5	6,00	3,8	15,5	6,20	3,80	35,8	4,00	5,50	70,0	8,50
2,00	6,0	9,6	10,00	4,8	16,8	8,20	5,50	45,5	5,20	6,50	92,0	10,67
2,50	6,5	10,7	10,23	6,0	21,1	10,20	6,80	56,0	7,30	-	-	-

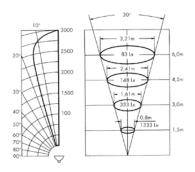
Oświetlenie

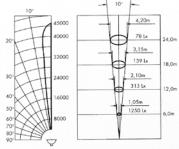
UWS T 111 / UWS TS 111



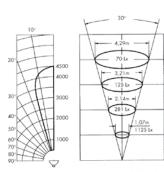



UWS TS 111


UWS T 111

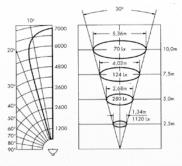


Reflektor podwodny przeznaczony do montażu zarówno pod powierzchnią wody jak i nad nią (wówczas maksymalnie 50W). Obudowa reflektora wykonana z odlewu tombaku jest standardowo wyposażona w pojedynczy wpust kablowy Pg 16. Żarówki do reflektora: 50W, 75 W lub 100W.



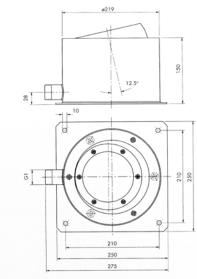
Rozsył światła w cd, żarówka halogenowa 12 V / 50 W / 30°

Natężenie oświetlenia w lx



Rozsył światła w cd, Natężenie oświetlenia żarówka halogenowa w lx 12 V / 100 W / 10°

Rozsył światła w cd, żarówka halogenowa 12 V / 75 W / 30°

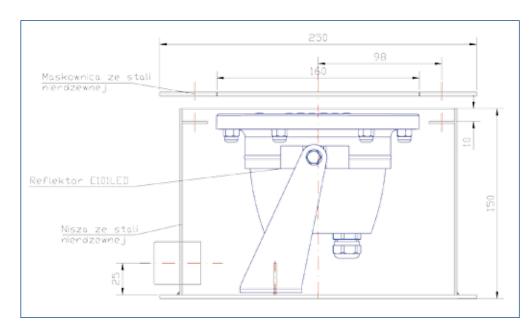

Natężenie oświetlenia w lx

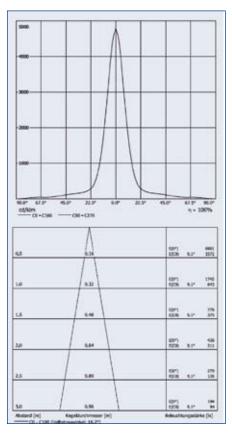
Rozsył światła w cd, żarówka halogenowa 12 V / 100 W / 30°

Nateżenie oświetlenia w lx

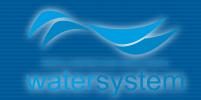
UWS TS 111

Oświetlenie

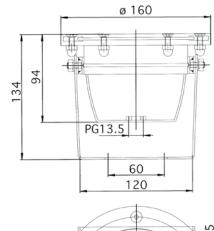

Profilux 370 LED / Profilux 370 LED TS


Profilux 370LED / 370LED TS

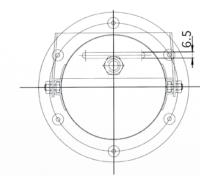
Reflektory Profilux LED przeznaczone są zarówno do eksploatacji podwodnej (wersja 12VAC oraz 24VDC), jako oświetlenie fontann i wodotrysków, jak i poza obszarem wodnym (tylko wersja 12VAC), do oświetlania rzeźb, budynków, krzewów, drzew, etc. Obudowa reflektora wykonana jest ze stali nierdzewnej. Reflektory wyposażone są w energooszczędne wkłady LED o barwie ciepłobiałej. W przypadku zwiększonej temperatury otoczenia, reflektor automatycznie redukuje moc światła, co chroni go przed uszkodzeniem.

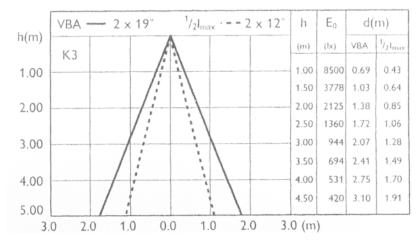

- wersja 12V AC / 24V DC
- wykonany ze stali nierdzewnej
- ciepłobiała barwa LED
- wyposażone standardowo w podwodne puszki zasilające
- zabezpieczenie przed nadmierną temperaturą

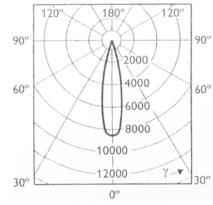
Dane techniczne	Profilux 12VAC	Profilux 24VDC	Profilux 24VDC TS	
Wymiary [mm]	160x135	160x135	250x250x150	
Napięcie	12V AC	24V DC	24V DC	
Moc	10VV	10W	10W	
Rozsył światła	1800cd	1800cd	1800cd	
Kąt emisji światła	20°	20°	20°	
Rodzaj ochrony	IP68	IP68	IP68	
Długość kabla [m]	1m	1m	-	
Materiał	Stal nierdzewna	Stal nierdzewna	Stal nierdzewna	
Waga [kg]	2,5kg	2,5kg	7,5kg	
Nisza	-	-	Tak	

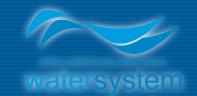

Oświetlenie




PROFILUX 101







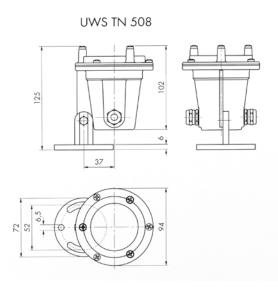
Тур	Profilux 101				
Wymiary (Ø x wys.)	160 x 134 mm				
Napięcie znamionowe	12 V				
Pobór mocy	50 W lub 75 W				
Kat emisji światła	24°				
Rozsył światła	4000 - 5000 cd				
Długość kabla	brak				
Wpust kablowy	1 szt., Pg 13,5				
Materiał	stal nierdzewna				
Masa	4,90 kg				
Nr art.	_				
Nr id.	56133				

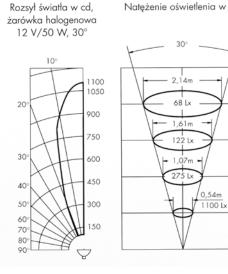
Oświetlenie

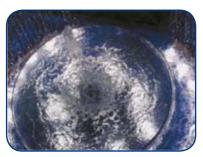
Natężenie oświetlenia w lx

4,0m

3.0m


2,0m


1,0m


UWS TN 508

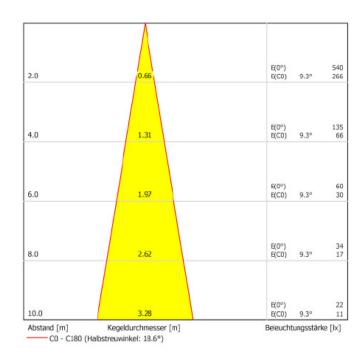
Reflektor podwodny o mocy 50 W w obudowie z tombaku. Jest przystosowany do podłączenia szeregowego. Posiada możliwość montażu kolorowych filtrów.



UWS TN 508	
Napięcie znamionowe	12 V
Pobór mocy	50 W
Rozsył światła	1100 cd
Kąt emisji światła	30°
Wpust kablowy	2 szt., Pg 11
Długość kabla	brak
Materiał	tombak
Masa	1,10 kg
Nr art.	862-550
Nr id.	51446

Oświetlenie

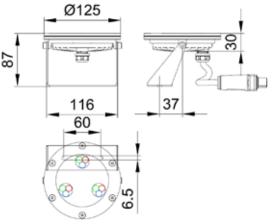
LED PP320


Podwodny reflektor ledowy do montażu w niecce fontanny. Dzięki unikatowemu rozwiązaniu istnieje możliwość zintegrowania reflektora z dyszą. Przeznaczony do pracy z dyszami typu KOMETA.

- sterowanie na bazie protokołu DMX, zapewniające płynną zmianę kolorów w zakresie 16 milionów barw
- protokół DMX-RDM gwarantujący uzyskanie informacji zwrotnej o aktualnym stanie najważniejszych parametrów reflektora
- podwodny zewnętrzny driver, pozwalający zmniejszyć wymiary szafy sterującej do niezbędnego minimum
- wtyk VTS, wykonany w standardzie IP68, zapewniający jednocześnie zasilanie 24V DC oraz sterownie DMX, stanowiący integralną część reflektora
- otwór 21mm zapewniający równomierne oświetlenie obrazu wodnego
- skuteczność oświetlania obrazu wodnego do 7m przy mocy 16W
- kompaktowa konstrukcja o grubości 30mm, specjalnie stworzona do obiektów fontannowych typu dry-plaza
- maskownica umożliwiająca profesjonalny montaż w płycie
- zasilanie bezpiecznym napięciem 24V DC, zgodnym z europejskim normami bezpieczeństwa odnośnie publicznych obiektów fontannowych
- pełna kompatybilność z agregatami AQUA JET EC1 I EC2

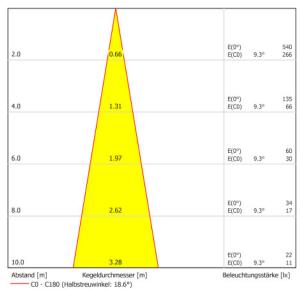
TYP	LED PP320	
Wymiary (średnica/wysokość)	180x47mm	
Natężenie prądu	O,7A	
Zasilanie	24V/DC	
Moc oświetlenia	320lm	
Pobór mocy	16W	
Promień oświetlenia	18°	
Klasa szczelności	IP68	
Kable zasilające	kabel hybrydowy 1m	
Efektywność świecenia	7,5m	
Materiał obudowy	stal nierdzewna	
Waga	1,5kg	
Nr. katalogowy	50719	

Oświetlenie



LED PL320

Podwodny reflektor ledowy do montażu w niecce fontanny.

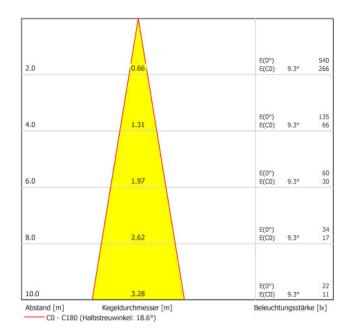

- sterowanie na bazie protokołu DMX, zapewniające płynną zmianę kolorów w zakresie 16 milionów barw
- protokół DMX-RDM gwarantujący uzyskanie informacji zwrotnej o aktualnym stanie najważniejszych parametrów reflektora
- reflektor przeznaczony do montażu pojedynczego lub w zespołach oświetleniowych
- podwodny zewnętrzny driver, pozwalający zmniejszyć wymiary szafy sterującej do niezbędnego minimum
- wtyk VTS, wykonany w standardzie IP68, zapewniający jednocześnie zasilanie 24V DC oraz sterownie DMX, stanowiący integralną część reflektora
- skuteczność oświetlania obrazu wodnego do 7m przy mocy 16W
- zasilanie bezpiecznym napięciem 24V DC, zgodnym z europejskim normami bezpieczeństwa odnośnie publicznych obiektów fontannowych

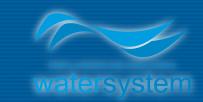
TYP	LED PL320	
Wymiary (średnica/wysokość)	125 x 87mm	
Natężenie prądu	O,7A	
Zasilanie	24V/DC	
Moc oświetlenia	320lm	
Pobór mocy	16W	
Promień oświetlenia	18°	
Klasa szczelności	IP68	
Kable zasilające	kabel hybrydowy 1m	
Efektywność świecenia	7,5m	
Materiał obudowy	stal nierdzewna	
Waga	1,5kg	
Nr. katalogowy	50717	

Oświetlenie

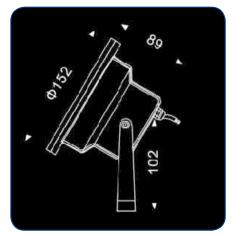
LED PR320

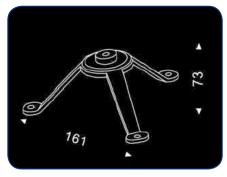
Podwodny reflektor ledowy do montażu w niecce fontanny. Dzięki unikatowemu rozwiązaniu istnieje możliwość zintegrowania reflektora z dyszą. Przeznaczony do pracy z dyszami typu KOMETA.


- sterowanie na bazie protokołu DMX, zapewniające płynną zmianę kolorów w zakresie 16 milionów barw
- protokół DMX-RDM gwarantujący uzyskanie informacji zwrotnej o aktualnym stanie najważniejszych parametrów reflektora
- reflektor przeznaczony do montażu pojedynczego lub w zespołach oświetleniowych
- centralne umieszczenie dyszy obrazu wodnego pozwala na jego całkowite oświetlenie do wysokości 7m przy mocy 16W
- podwodny zewnętrzny driver, pozwalający zmniejszyć wymiary szafy sterującej do niezbędnego minimum
- wtyk VTS, wykonany w standardzie IP68, zapewniający jednocześnie zasilanie 24V DC oraz sterownie DMX, stanowiący integralną część reflektora
- zasilanie bezpiecznym napięciem 24V DC, zgodnym z europejskim normami bezpieczeństwa odnośnie publicznych obiektów fontannowych



LED PR320
125 x 47mm
0,7A
24V/DC
320lm
16W
18°
IP68
kabel hybrydowy 1m
7,5m
stal nierdzewna
1,0kg
50718




Oświetlenie

LED SRD

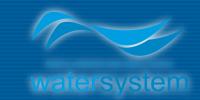
Reflektor w obudowie ze stali nierdzewnej przeznaczony do montażu w wewnętrznych i zewnętrznych nieckach fontannowych. Lampa może być montowana jako pojedynczy punkt oświetlenia oraz jako element układów oświetleniowych obrazów wodnych. Reflektory przeznaczone do pracy pod wodą. Czas pracy bez wody do 15 min.

TYP	LED SRD9x1 RGB	LED SRD9x3 RGB	LED SRD9x3 RGB 3
Kolor	RGB (3R3G3B)	RGB (3R3G3B)	RGB (3w1)
Wymiary	152 mm x 98 mm	152 mm x 98 mm	152 mm x 98 mm
Stopień wodoodporności	IP68	IP68	IP68
Moc pobierana	10,4W	20W	27,4W
Kąt świecenia	25°	25°	25°
Zasilanie	24VDC	24VDC	24VDC
Kabel zasilający	H05RNF 4x0,75mm ² L=3m	H05RNF 4x0,75mm ² L=3m	H05RNF 4x0,75mm ² L=3m

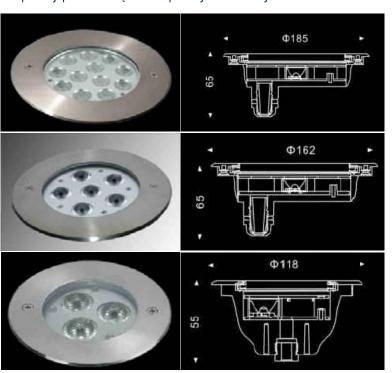
Oświetlenie

LED SRM

Reflektor w obudowie ze stali nierdzewnej przeznaczony do montażu w wewnętrznych i zewnętrznych nieckach fontannowych. Lampa dostępna w wersji monochromatycznej białej, trój kolorowej i RGB. Lampa może być montowana jako pojedynczy punkt oświetlenia oraz jako element układów oświetleniowych obrazów wodnych. Reflektory przeznaczone do pracy pod wodą. Czas pracy bez wody do 15 min.



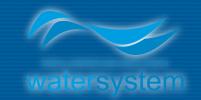
TYP	LED SRM6x1 W	LED SRM6x3 W	LED SRM6x1 RGB
Kolor	Biały	Biały	RGB (2R2G2B)
Wymiary	115 mm x 32	115 mm x 32	115 mm x 32
Stopień wodoodporności	IP68	IP68	IP68
Moc pobierana	7,0 W	15,1 W	7,6W
Kąt świecenia	15º	15°	300
Zasilanie	24VDC	24VDC	24VDC
Kabel zasilający	H05RN-F 2x1,0mm ² L=3m	H05RN-F 2x1,0mm ² L=3m	H05RN-F 4x0,75mm ² L=3m


TYP	LED SRM6x3 RGB LED SRM6x3 RGI		
Kolor	RGB (2R2G2B)	RGB (3w1)	
Wymiary	115 mm x 32	115 mm x 32	
Stopień wodoodporności	IP68	IP68	
Moc pobierana	14W	19,5W	
Kąt świecenia	300	30°	
Zasilanie	24VDC	24VDC	
Kabel zasilający	H05RN-F 4x0,75mm ² L=3m	H05RN-F 4x0,75mm ² L=3m	

Oświetlenie

LED SRP

Reflektor w obudowie ze stali nierdzewnej przeznaczony do montażu w wewnętrznych i zewnętrznych nieckach fontannowych. Lampa dostępna w wersji monochromatycznej białej i RGB. Lampa może być montowana jako pojedynczy punkt oświetlenia oraz jako element układów oświetleniowych obrazów wodnych. Reflektory przeznaczone do pracy pod wodą. Czas pracy bez wody do 15 min.

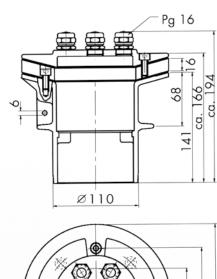


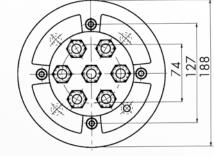
TYP	LED SRP3x3 W	LED SRP3x3 RGB3	LED SRP6x3 W
Kolor	Biały	RGB (3w1)	Biały
Wymiary	118 mm x 55 mm	118 mm x 55 mm	162 mm x 65 mm
Stopień wodoodporności	IP68	IP68	IP68
Moc pobierana	7,2 W	10,2 W	15,1 W
Kąt świecenia	30°	30°	30°
Zasilanie	24VDC	24VDC	24VDC
Kabel zasilający	H05RN-F 2x1,0mm ² L=3m	H05RN-F 4x0,75mm ² L=3m	H05RN-F 2x1,0mm ² L=3m

TYP	LED SRP6x3 RGB3	LED SRP12x3 W	LED SRP12x3 RGB3
Kolor	RGB (3w1)	Biały	RGB (3w1)
Wymiary	162 mm x 65 mm	185 mm x 65 mm	185 mm x 65 mm
Stopień wodoodporności	IP68	IP68	IP68
Moc pobierana	19,5 W	21,5 W	36,3 W
Kąt świecenia	30°	25°	45°
Zasilanie	24VDC	24VDC	24VDC
Kabel zasilający	H05RN-F 4x0,75mm ² L=3m	H05RN-F 2x1,0mm ² L=3m	H05RN-F 4x0,75mm ² L=3m

Oświetlenie

Amatura przepustowa kabli KD 1/10E - KD 12/100T


Armatura przepustowa kabli
KD 1/10 E
Ilość wpustów kablowych Pg 16 1 szt.
Średnica kabla 7 - 14 mm
Przyłącze 1"
Do zbiorników wyłożonych folią nie
Materiał stal nierdzewna V4A
Masa 0,55 kg
Nr art. 852-552
Nr id. 51741


Armatura przepustowa	Kabli
KDF 7/100 T	
Ilość wpustów kablowych Pg	16 7 szt.
Średnica kabla	7 - 14 mm
Przyłącze	mufa DN 100
Do zbiorników wyłożonych ł	folią tak
Materiał	tombak
Masa	6,00 kg
Nr art.	852-580
Nr id.	52608

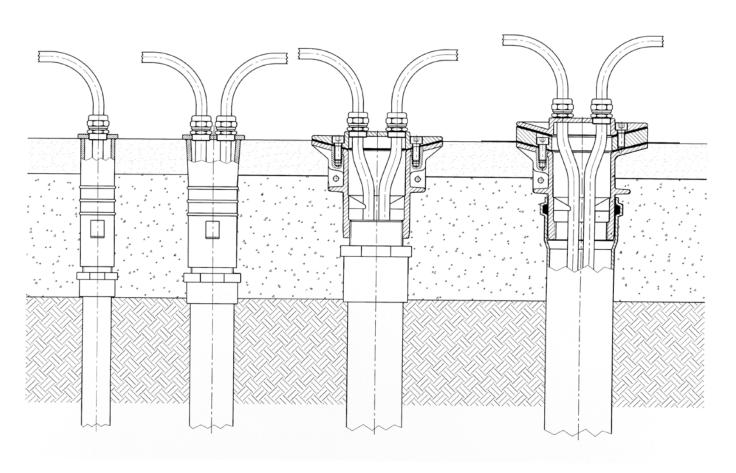
Armatura przepustowa k	cabli
KD 4/70 T	
Ilość wpustów kablowych Pg	16 4 szt.
Średnica kabla	7 - 14 mm
Przyłącze	mufa DN 70
Do zbiorników wyłożonych fo	lią nie
Materiał	tombak
Masa	3,20 kg
Nr art.	852-554
Nr id.	51336

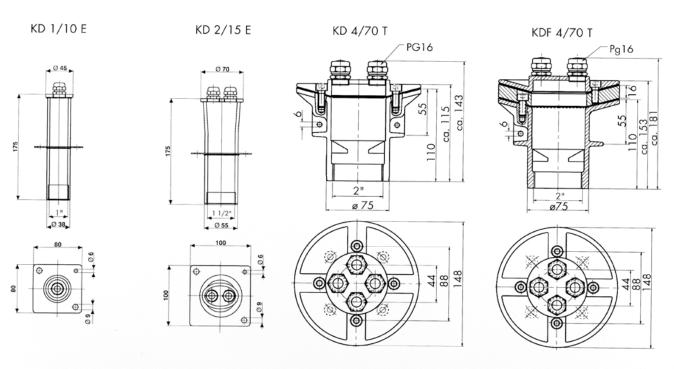
Armatura przepustowa dla kabli służy do wodoszczelnego przeprowadzenia przewodów zasilających w nieckach fontannowych i zbiornikach przelewowych. Armatura przeznaczona jest dla przeprowadzenia od 1 do 12 kabli.

KDF 7/100 T

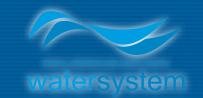

Armatura przepustowa	kabli
KD 12/100 T	
Ilość wpustów kablowych Pg	16 12 szt.
Średnica kabla	7 - 14 mm
Przyłącze	mufa DN 100
Do zbiorników wyłożonych f	olią nie
Materiał	tombak
Masa	8,70 kg
Nr art.	852-556
Nr id.	51768

Armatura przepustowa	kab	li
KDF 4/70 T		
Ilość wpustów kablowych Pg	16	4 szt.
Średnica kabla	7	- 14 mm
Przyłącze	mu	fa DN 70
Do zbiorników wyłożonych fo	olią	tak
Materiał		tombak
Masa		4,10 kg
Nr art.		852-575
Nr id.		52607

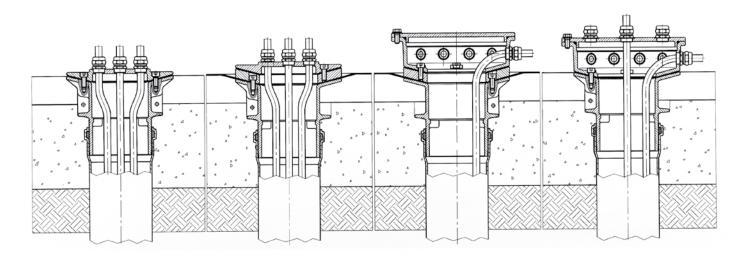

Armatura prze	pustowa kabli	i
KD 2/15 E		
Ilość wpustów kał	olowych Pg 16	2 szt.
Średnica kabla	7 -	14 mm
Przyłącze		1 1/2"
Do zbiorników wy	yłożonych folią	nie
Materiał	stal nierdzew	na V4A
Masa	(0,90 kg
Nr art.	8	52-553
Nr id.		51740

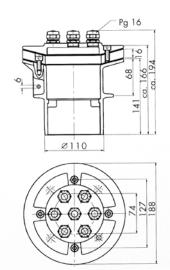

Armatura przepust	owa kabli
KD 7/100 T	
Ilość wpustów kablowy	rch Pg 16 7 szt.
Średnica kabla	7 - 14 mm
Przyłącze	mufa DN 100
Do zbiorników wyłożo	nych folią nie
Materiał	tombak
Masa	4,90 kg
Nr art.	852-555
Nr id.	51337

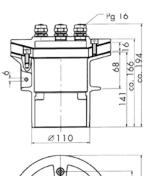
Oświetlenie

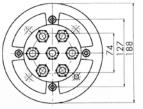


Amatura przepustowa kabli KD 1/10E - KD 12/100T

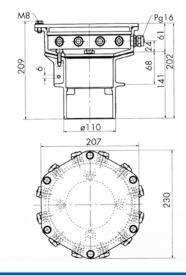


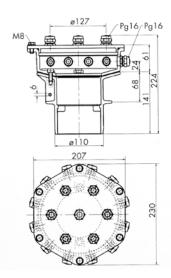



Oświetlenie



Amatura przepustowa kabli KD 1/10E - KD 12/100T



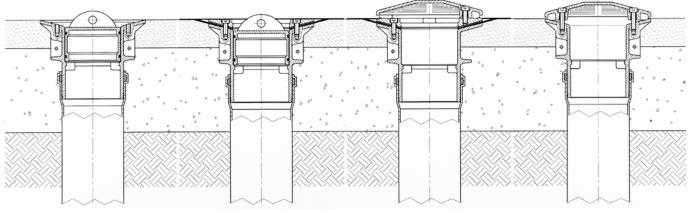


KD 7/100 T

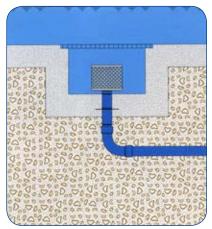
KDF 7/100 T

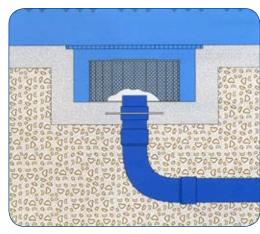
KD 19/100 T na zamówienie

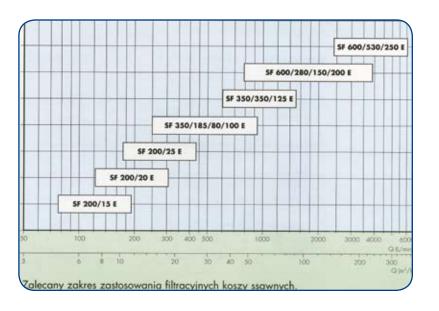
KD 12/100 T

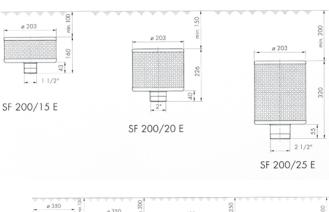

Armatura spustowa

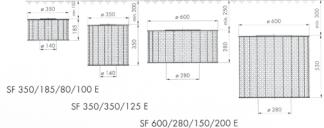
BA 70T - BA 100T; BAS 70T - BAS 100T


Dane techniczne	BA 70 T	BA 100 T	BAS 70 T	BAS 100 T
DN	70	100	70	100
Materiał	tombak	tombak	tombak	tombak
Masa	2,60 kg	4,50 kg	2,75 kg	4,40 kg
Nr art.	803-561	804-561	806-530	806-531
Nr id.	51107	51116	51121	51122
Dane techniczne	FK 70	FK 100	WS 70 T	WS 100 T
	Kołnierz zaciskowy do folii	Kołnierz zaciskowy do folii	Sito zabezpieczające	Sito zabezpieczające
DN	70	100	70	100
Materiał	tombak	tombak	tombak	tombak
Masa	0,90 kg	1,10 kg	0,80 kg	1,40 kg
Nr art.	803-575	804-575	803-562	804-562
Nr id.	51108	5111 <i>7</i>	51973	51974


Filtracyjne kosze ssawne




SF 200/15E - SF 600/530/250E



SF 600/530/250 E

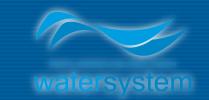
Dane techniczne	SF 200/100/15 E	SF 200/166/20 E	SF 200/250/25 E	
DN	1 1/2"	2"	2 1/2"	
Powierzchnia filtracyjna	0,08 m ²	0,12 m ²	0,18 m ²	
Materiał	stal nierdzewna	stal nierdzewna	stal nierdzewna	
Masa	1,10 kg	1,50 kg	1,80 kg	
Nr art.	800-560	800-561	800-562	
Nr id.	51082	51083	51084	
Dane techniczne	SF 350/185/80/100 E	SF 350/350/125 E	SF 600/280/150/200 E	SF 600/530/250 E
Dane leciniczne	31 030/103/00/100 1	51 050/050/125 2	5. 666, 266, 156, 266 2	0.000,000,200
DN	80/100	125	150/200	250
Powierzchnia filtracyjna	0,44 m ²	0,88 m ²	1,50 m ²	3,00 m2
Materiał	stal nierdzewna	stal nierdzewna	stal nierdzewna	stal nierdzewna
Masa	9,50 kg	11,50 kg	43,10 kg	49,5 kg
Nr art.	800-565	800-567	800-568	800-570
Nr id.	51753	54755	51756	52266

Zestaw filtracyjny FRM

Zestaw filtracyjny FRM jest przeznaczony do stosowania w układach technologicznych fontann oraz basenów. W skład zestawu wchodzą:

- Pompa plastikowa samozasysająca charakteryzująca się cicha pracą przy stosunkowo niskiej temperaturze działania. Pompa posiada wysokiej jakości łożyska i uszczelnienia mechaniczne. Jestzintegrowana z prefiltrem zabezpieczającym wirnik pompy przed większymi zanieczyszczeniami mogącymi uszkodzić wirnik
- Filtr który jest wyposażony w duży otwór załadowczy usytuowany w górnej części. Wewnątrz znajduje się rozdzielacz z rurkami szczelinowymi. Dodatkowo filtr posiada ręczne odwodnienie, manometr i odpowietrzenie:
- Pompa i filtr są połączone za pomocą zaworu sześciodrogowego. Dzięki niemu układ może pracować w następujących trybach: filtracja, płukanie, zrzut pierwszego filtratu, recyrkulacja oraz układ zamknięty.

Dane techniczne	Q [m3/h]	Moc pompy [kW]	Średnica filtra D [mm]	Przyłącze zaworu D[mm]	Przyłącze pompy D[mm]
FRM 350	5,0	0,25kW 230V	350	50	50
FRM 400	7,0	0,43kW 400V	400	50	50
FRM 500	9,0	0,43kW 400V	500	50	50
FRM 600	14,0	0,76kW 400V	600	63	63
FRM 750	22,0	1,10kW 400V	750	75	63
FRM 900	32,0	2,20 kW 400V	900	90	75


Czujniki poziomu wody.

Zestaw czujników poziomu wody jest stosowany do określenia położenia lustra wody w zbiorniku przelewowym lub niecce fontanny. W układzie technologicznym spełnia funkcję pomiarową do sterowania otwarciem/zamknięciem elektrozaworu i zabezpieczeniem przed sucho obiegiem. Czujnik jest oferowany w dwóch wersjach: zespolonego czujnika w obudowie do fontann pracujących w oparciu o system skimmerowy i czterech sond przeznaczonych do zbiorników przelewowych.

Dane techniczne	llość sond	Długość kabla [m]	Obudowa sond
WLS-3	2	10	Tak
WLS-4	4	10	Tak
Micro 4	4	10	Nie

Filtry wody MultiCyclone

Filtr wody MuliCyclone do układów technologicznych fontann i basenów. Do stosowania jako element w układach filtracji wody pomiędzy pompą a filtrem piaskowym. Pozwala to wydatnie zmniejszyć częstotliwość płukania filtra piaskowego oraz przedłuża żywotność jego złoża. W małych pomieszczeniach technicznych gdzie nie ma miejsca na lokalizacje filtrów piaskowych może je skutecznie zastępować. W układach atrakcji wodnych fontanny stosowany jako zabezpieczenie dysz fontannowych przed zapychaniem i uszkodzeniem. Przeźroczysta obudowa zapewnia łatwą obserwację ilości zabranych zanieczyszczeń.

Urządzenie	DOGGOCZONIO		' '	Ciśnienie maksymalne
MultiCyclone 12	D40 / 1 1/2 "	2,4 m³/h	18 m³/h	35 mH2O
MultiCyclone 16	D50 / 2"	3 m³/h	30 m³/h	35 mH20

Filtry siatkowe NW.

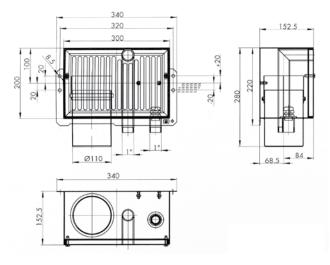
Zastosowanie:

Filtry o wysokiej skuteczności filtracji przeznaczone do ochrony agregatów i dysz fontannowych przed zanieczyszczeniami mechanicznymi mogącymi zaburzać ich prace. Zanieczyszczenia gromadzone są na dnie przeźroczystej obudowy i mogą być łatwo usunięte przez chwilowe otwarcie spustu.

Wyposażenie standardowe:

- przeźroczysta obudowa
- przyłącza kołnierzowe
- drobnosiatkowy wkład
- manometry
- zawór ściekowy

Rodzaj filtra	NW 500	NW 650	NW 800
Przyłącze	DN50	DN65	DN80
Przepływ średni	18 [m3/h]	25 [m3/h]	32 [m3/h]
Ciśnienie robocze	10 bar	10 bar	10 bar
Ciśnienie maksymalne	16 bar	16 bar	16 bar



Skimmer

Skimmer do montażu w niecce fontanny. Wykonany z polerowanej stali nierdzewnej składa się z: rury ssącej, przelewu awaryjnego, miejsca do montażu czujnika poziomu wody i maskownicy zabezpieczającej.

Anemometr.

Anemometr jest urządzeniem służącym do regulacji wysokości strumieni wodnych w zależności od siły wiatru. Zestaw składa się z czujnika montowanego na zewnątrz fontanny, kabla sygnałowego i szafki sterującej.

Śluza dozująca

Śluza dozująca do tabletek chlorowych, bromowych i tlenowych. Do montażu na ciśnieniowej części układów filtracyjnych. Śluza jest wyposażona w zawór regulacyjny, ręczne odwodnienie śluzy , zwężkę Ventuliego. Śluza jest dostępna w wersji 3,5 kg wkładu tabletek.

Pompy EVO.

Seria pomp dozujących EVO przeznaczona do dozowania chemii winstalacjach wodnych takich jak systemy filtracyjne basenów i fontann. Szeroki zakres wydajności od 1 do 60l/h przy ciśnieniu 20 bar pozwala na optymalny dobór urządzenia do układu. Kilka rodzajów sposobu sterowania pompami umożliwia ich indywidualną pracę lub zestawianie np. z PC95, sondami pH, wodomierzami i etc.

Model pompy	Sterowanie	Dane techniczne
AKL		Analogowa pompa dozująca ze stała prędkością przepływu regulowaną ręcznie
APG	Analogowe	Analogowa pompa dozująca ze stała prędkością przepływu regulowaną ręcznie, z proporcjonalna prędkością przepływu zgodnie z zewnętrznym sygnałem analogowym (4 – 20mA) lub sygnałem cyfrowym (licznik wody)
ATL		Analogowa pompa dozująca ze stałą prędkością przepływu i dozowaniem czasowym z podwójną regulacją T-on, T-off.
TPG	Cyfrowe	Cyfrowa pompa dozująca ze stała prędkością przepływu regulowana ręcznie, z proporcjonalną prędkością przepływu zgodnie z zewnętrznym sygnałem analogowym (4 – 20mA) lub sygnałem cyfrowym (licznik wody)
TPR		Cyfrowa pompa dozująca z wbudowanym licznikiem kontroli pH/Redox
TCK		Cyfrowa pompa dozująca ze stała prędkością przepływu lub czasową

Panel kontrolny PC

Panel kontrolny PC

Komputer basenowy do pomiaru i korekty poziomu pH i Cl w wodzie. Urządzenie w sposób automatyczny zapewnia bardzo dobrą jakość wody. Zakres pomiaru O-14pH oraz O-5ppm dla wolnego chloru.

Dane techniczne	
Wymiary	400x500 mm
Stopień ochrony	IP65
Zasilanie	230 Vac (standard) lub 115 Vac na życzenie
Zakres pomiaru pH	(O14 +/- O.1pH)
Zakres pomiaru Cl	(05 ppm +/- 0.01 ppm.)
Izolacja galwaniczna wy.	0/420 mA
Wyjścia	420 mA
Przekaźnik bezpotencjałowy	5 A - 250 Vac do pomp pH i Cl
Przekaźnik alarmowy	5 A - 250 Vac
Kompensacja temp.	automatyczna poprzez PT100

PRZYKŁADOWE REALIZACJE:


Multimedialny Park Fontann w Warszawie

Fontanna WŚD na Placu Szczepańskim w Krakowie

Fontanna na Rynku w Wolsztynie

Fontanna w WSPiA w Rzeszowie

Fontanna w Suwałkach

Fontanna na Oś. Wiślane Tarasy w Krakowie

WATERSYSTEM SP. Z O.O.

UL. Trakt Brzeski 167, Zakręt 05-077 Wesoła, POLAND tel.: +48 (22) 795 77 93 tel./fax: +48 (22) 773 23 80 WATERSYSTEM@WATERSYSTEM.PL

WWW.WATERSYSTEM.PL